
The eqparbox package∗

Scott Pakin
pakin@uiuc.edu

2001/04/19

Abstract

The eqparbox package makes it easy to define a group of \parboxes whose
members all have the same width, the natural width of the widest member.
A document can contain any number of groups, and each group can contain
any number of members. This simple, equal-width mechanism can be used
for a variety of alignment purposes, as is evidenced by the examples in this
document.

1 Motivation

Let’s start with a little test. How would you typeset Table 1, in which the numbers
are right-justified relative to each other but centered as a group within each col-
umn. And second, how would you typeset the résumé excerpt shown in Figure 1
while meeting the following requirements:

1. The header columns must be left-justified relative to each other.

2. The headers columns should be evenly spaced across the page.

3. Page breaks should be allowed within the résumé.

The two questions can be answered the same way: by putting various blocks
of text into equal-widthed boxes. if the data in Table 1 are put into equal-sized

∗This file has version number v1.00, last revised 2001/04/19.

Table 1: Sample sales data

Sales (in millions)
Product October November December

Widgets 55.2 89.2 57.9
Doohickeys 65.0 64.1 9.3
Thingamabobs 10.4 8.0 109.7

1

mailto:pakin@uiuc.edu
mailto:pakin@uiuc.edu

Widgets, Inc. Senior Widget Designer 1/95–present

• Supervised the development of the new orange and blue widget lines.

• Improved the design of various widgets, making them less sticky and far less
likely to explode.

• Made widget management ten times more cost-effective.

Thingamabobs, Ltd. Lead Engineer 9/92–12/94

• Found a way to make thingamabobs run on solar power.

• Drafted a blueprint for a new doohickey-compatibility module for all cool-
mint thingamabobs.

• Upgraded superthingamabob specification document from Microsoft Word
to LATEX2ε.

Figure 1: Excerpt from a sample résumé

\parboxes, each containing a \raggedleft for right-justification, the \parboxes
can then be centered to achieve the desired result. Similarly, if the company
names in Figure 1 are both put in a \parbox as wide as “Thingamabobs, Ltd.,”
the job titles in a \parbox as wide as “Senior Widget Designer,” and the dates in a
\parbox as wide as “1/95–present,” then they can be spaced evenly by separating
them with \hfills.

The problem is in choosing the width for each set of \parboxes. For Table 1,
this isn’t too difficult, because digits are the same width as each other in most
fonts. Each \parbox, therefore, need be only as wide as the largest sequence of
digits expected. Figure 1 is more of a bother. The user must typeset the résumé
once to see which entry in each column is the widest and then assign lengths
appropriately:

\newlength{\placewidth}

\settowidth{\placewidth}{Thingamabobs, Ltd.} % Employment 2

\newlength{\jobtitlewidth}

\settowidth{\jobtitlewidth}{Senior Widget Designer} % Employment 1

\newlength{\dateswidth}

\settowidth{\dateswidth}{1/95--present} % Employment 1

Every time a piece of information changes, it must be changed in two places: in the
résumé itself and in the \settowidth command. When employment information

2

is added or deleted, the \settowidth commands must be modified to reflect the
new maximum-widthed entry in each column. If only there were a simpler way to
keep a set of \parboxes as wide as the widest entry in the set . . .

That simpler way is the eqparbox package. eqparbox exports a macro,
\eqparbox, which works just like \parbox, except that instead of specifying the
width of the box, one specifies the group that the box belongs to. All boxes in
the same group will be typeset as wide as the widest member of the group. In
that sense, an \eqparbox behaves like a cell in an l, c, or r column in a tabular;
\eqparboxes in the same group are analogous to cells in the same column.

2 Usage

The primary macro in the eqparbox package is \eqparbox. Usage is almost iden-\eqparbox

tical to that of \parbox:

\eqparbox [〈pos〉] [〈height〉] [〈inner-pos〉] {〈tag〉} {〈text〉}

The only difference is that, where \parbox has its 〈width〉 argument, \eqparbox
has 〈tag〉. (For a description of the remaining arguments, look up \parbox in any
LATEX2ε book or in the usrguide.tex file that comes with LATEX2ε.) 〈tag〉 can
be any valid identifier. All \eqparboxes with the same tag will be typeset in a
box wide enough to hold the widest of them. Discounting TEX’s limitations, any
number of tags can be used in the same document, and any number of \eqparboxes
can share a tag.

The only catch is that latex will need to be run a second time for the various
box widths to stabilize.

It is sometimes useful to take the width of an \eqparbox to use in other LATEX\eqboxwidth

commands. While the width can be determined by creating an \eqparbox and
using \settowidth to measure it, the eqparbox package defines a convenience
routine called \eqboxwidth that achieves the same result.

\eqboxwidth makes it easy to typeset something like Table 2. Table 2’s only
column expands to fit the widest cell in the column, excluding the final cell. The
final cell’s text word-wraps within whatever space is allocated to it. In a sense, the
first four cells behave as if they were typeset in an l column, while the final cell
behaves as if it were typeset in a p column. In actuality, the column is an l column;
an \eqparbox for the first four cells ensures the column stretches appropriately,
while a \parbox of width \eqboxwidth{〈tag〉} in the final cell ensures that the
final cell word-wraps.

3 Examples

Figure 1’s headings were typeset with the following code:

\noindent%

3

Table 2: A tabular that stretches to fit some cells while forcing others to wrap

Wide
Wider
Wider than that
This is a fairly wide cell
While this cell’s text
wraps, the previous cells
(whose text doesn’t
wrap) determine the
width of the column.

\eqparbox{place}{\textbf{Widgets, Inc.}} \hfill

\eqparbox{title}{\textbf{Senior Widget Designer}} \hfill

\eqparbox{dates}{\textbf{1/95--present}}

...

\noindent%

\eqparbox{place}{\textbf{Thingamabobs, Ltd.}} \hfill

\eqparbox{title}{\textbf{Lead Engineer}} \hfill

\eqparbox{dates}{\textbf{9/92--12/94}}

...

Table 1 was entered as follows:

\begin{tabular}{@{}lccc@{}} \hline

& \multicolumn{3}{c}{Sales (in millions)} \\ \cline{2-4}

\multicolumn{1}{c}{\raisebox{1ex}[2ex]{Product}} &

October & November & December \\ \hline

Widgets & \eqparbox{oct}{\raggedleft 55.2 } &

\eqparbox{nov}{\raggedleft\textbf{ 89.2}} &

\eqparbox{dec}{\raggedleft 57.9 } \\

Doohickeys & \eqparbox{oct}{\raggedleft\textbf{ 65.0}} &

\eqparbox{nov}{\raggedleft 64.1 } &

\eqparbox{dec}{\raggedleft 9.3 } \\

Thingamabobs & \eqparbox{oct}{\raggedleft 10.4 } &

\eqparbox{nov}{\raggedleft 8.0 } &

\eqparbox{dec}{\raggedleft\textbf{109.7}} \\ \hline

\end{tabular}

4

Stuff about me I am great. Blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah.

More stuff I am wonderful. Blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah.

Did I mention that blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah?

The final exciting thing I am fantastic. Blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah.

Figure 2: Paragraphs with hanging indentation

Note that the above can be simplified by defining a macro that combines
\eqparbox and \raggedleft. Furthermore, because the numeric data being type-
set are all approximately the same width, a single tag could reasonably replace
oct, nov, and dec. As it stands, the code serves more as an illustration than as
an optimal way to typeset Table 1.

Finally, Table 2 utilizes code similar to the following:

\begin{tabular}{|l|} \hline

\eqparbox[b]{wtab}{Wide} \\ \hline

\eqparbox[b]{wtab}{Wider} \\ \hline

\eqparbox[b]{wtab}{Wider than that} \\ \hline

\eqparbox[b]{wtab}{This is a fairly wide cell} \\ \hline

\parbox[b]{\eqboxwidth{wtab}}{%

While this cell’s text wraps, the previous cells (whose text

doesn’t wrap) determine the width of the column.} \\ \hline

\end{tabular}

As an additional example, consider the paragraphs depicted in Figure 2. We’d
like the paragraph labels set on the left, as shown, but we’d also like to allow
both intra- and inter-paragraph page breaks. Of course, if the labels are made
wider or narrower, we’d like the paragraph widths to adjust automatically. (Can
any word processor do that, incidentally?) By using a custom list environment
which typesets its labels with \eqparbox, this is fairly straightforward:

5

\begin{list}{}{%

\renewcommand{\makelabel}[1]{\eqparbox[b]{listlab}{#1}}%

\setlength{\labelwidth}{\eqboxwidth{listlab}}%

\setlength{\labelsep}{2em}%

\setlength{\parsep}{2ex plus 2pt minus 1pt}%

\setlength{\itemsep}{0pt}%

\setlength{\leftmargin}{\labelwidth+\labelsep}%

\setlength{\rightmargin}{0pt}}

\item[Stuff about me] I am great. Blah, blah, blah, ...

\item[More stuff] I am wonderful. Blah, blah, blah, ...

\item[The final exciting thing] I am fantastic. Blah,

blah, blah, ...

\end{list}

4 Implementation

The one-sentence summary of the implementation is, “As eqparbox goes along, it
keeps track of the maximum width of each box type, and when it’s finished, it
writes those widths to the .aux file for use on subsequent runs.” If you’re satisfied
with that summary, then read no further. Otherwise, get ready to tackle the
following annotated code listing.

1 〈∗package〉

\eqp@tempdima

\eqp@tempdimb

\eqp@tempdimc

Define a few temporary 〈dimen〉s for use in a variety of locations.
2 \newlength{\eqp@tempdima}

3 \newlength{\eqp@tempdimb}

4 \newlength{\eqp@tempdimc}

\ifeqp@must@rerun

\eqp@must@reruntrue

\eqp@must@rerunfalse

If an eqparbox is wider than the maximum-width eqparbox with the same tag,
we need to store the new maximum width and request that the user re-run latex.
We use \ifeqp@must@rerun and \eqp@must@reruntrue to assist with this.
5 \newif\ifeqp@must@rerun

6

7 \AtEndDocument{%

8 \ifeqp@must@rerun

9 \@latex@warning@no@line{Rerun to correct eqparbox widths}

10 \fi

11 }

\eqp@settowidth This macro is just like \settowidth, but it puts its argument in a tabular, which
means that it can contain \\. Is there a better way to find the natural width of
something like “This is split \\ across lines.”?
12 \def\eqp@settowidth#1#2{%

6

13 \settowidth{#1}{\begin{tabular}{@{}l@{}}#2\end{tabular}}%

14 }

\eqparbox

\eqparbox@i

\eqparbox@ii

We want \eqparbox to take the same arguments as \parbox, with the same default
values for the optional arguments. The only difference in argument processing is
that \eqparbox has a 〈tag〉 argument where \parbox has 〈width〉.

Because \eqparbox has more than one optional argument, we can’t use a single
function defined by \DeclareRobustCommand. Instead, we have to split \eqparbox
into the following four macros:

\eqparbox Takes zero or more optional arguments. First optional argument de-
faults to c. Calls \eqparbox@i.

\eqparbox@i Takes one or more optional arguments. Second optional argument
defaults to \relax. Calls \eqparbox@ii.

\eqparbox@ii Takes two or more optional arguments. Third optional argument
defaults to s if either of the first two arguments is absent or to the first
argument if both are present. Calls \eqparbox@iii.

\eqparbox@iii Takes three optional arguments and two mandatory arguments.
Does all the work for \eqparbox.

Note the direct correspondence between these macros and ltboxes.dtx’s \parbox,
\@iparbox, \@iiparbox, and \@iiiparbox macros.
15 \DeclareRobustCommand\eqparbox{%

16 \@ifnextchar[%]

17 {\eqparbox@i}%

18 {\eqparbox@iii[c][\relax][s]}%

19 }

20 \def\eqparbox@i[#1]{%

21 \@ifnextchar[%]

22 {\eqparbox@ii[#1]}%

23 {\eqparbox@iii[#1][\relax][s]}%

24 }

25 \def\eqparbox@ii[#1][#2]{%

26 \@ifnextchar[%]

27 {\eqparbox@iii[#1][#2]}%

28 {\eqparbox@iii[#1][#2][#1]}%

29 }

\eqparbox@iii The following function does all the real work for \eqparbox. It takes five
parameters—〈pos〉, 〈height〉, 〈inner-pos〉, 〈tag〉, and 〈text〉—and ensures that all
boxes with the same tag will be as wide as the widest box with that tag.

To keep track of box widths, \eqparbox makes use of three global variables for
each tag: \eqp@〈tag〉, \eqp@first〈tag〉, and \eqp@next〈tag〉. \eqp@〈tag〉 is the
maximum width seen so far for tag 〈tag〉. It is initialized to \eqp@first@〈tag〉, if
defined, otherwise to the width of 〈text〉. \eqp@next@〈tag〉 works the same way,
but is always initialized to 0.0pt. At the end of a run, eqparbox prepares the

7

next run (via the .aux file) to initialize \eqp@first@〈tag〉 to the final value of
\eqp@next@〈tag〉.

\eqp@next@〈tag〉 is needed to detect whether the widest text with tag 〈tag〉
has been removed/shrunk. \eqp@first@〈tag〉 is needed so \eqp@〈tag〉 can be
initialized to it, while \eqp@next@〈tag〉 is initialized to 0.0pt.
30 \def\eqparbox@iii[#1][#2][#3]#4#5{%

31 \expandafter%

32 \ifx\csname eqp@#4\endcsname\relax

If we get here, then this is the first use of 〈tag〉 in this document. In the following
\ifx statement, we initialize \eqp@〈tag〉 to the value of \eqp@first@〈tag〉, if
defined, otherwise to the width of 〈text〉.
33 \expandafter\global\expandafter\newlength\csname eqp@#4\endcsname

34 \expandafter\global\expandafter\newlength\csname eqp@next@#4\endcsname

35 \expandafter%

36 \ifx\csname eqp@first@#4\endcsname\relax

If we didn’t encounter tag 〈tag〉 on our previous run, then request that the user
re-run latex. This is not always necessary (e.g., when all uses of the \eqparbox
with tag 〈tag〉 are left-justified), but it’s better to be safe than sorry.
37 \global\eqp@must@reruntrue

38 \global\eqp@settowidth{\csname eqp@#4\endcsname}{#5}%

39 \else

40 \global\csname eqp@#4\endcsname=\csname eqp@first@#4\endcsname\relax

41 \fi

At the \end{document}, we see if \eqp@next@〈tag〉, which was initialized
to 0.0pt, is smaller than \eqp@〈tag〉, which was initialized to the maximum box
width from the previous run. If so, we initialize the next run’s \eqp@first@〈tag〉
to \eqp@next@〈tag〉 and tell the user to re-run latex, because the widest box with
tag 〈tag〉 must have been removed or shrunk. Otherwise, we initialize the next
run’s \eqp@first@〈tag〉 to \eqp@〈tag〉.
42 \AtEndDocument{%

43 \expandafter\let\expandafter\eqp@tempdima\csname eqp@next@#4\endcsname

44 \expandafter\let\expandafter\eqp@tempdimb\csname eqp@#4\endcsname

45 \ifnum\eqp@tempdima<\eqp@tempdimb

46 \@latex@warning@no@line{Rerun to correct width of eqparbox ‘#4’}

47 \immediate\write\@auxout{%

48 \string\global\string\newdimen%

49 \expandafter\string\csname eqp@first@#4\endcsname^^J%

50 \string\global\expandafter\string\csname eqp@first@#4\endcsname=%

51 \expandafter\the\eqp@tempdima\string\relax

52 }

53 \else

54 \immediate\write\@auxout{%

55 \string\global\string\newdimen%

56 \expandafter\string\csname eqp@first@#4\endcsname^^J%

57 \string\global\expandafter\string\csname eqp@first@#4\endcsname=%

58 \expandafter\the\eqp@tempdimb\string\relax

59 }

8

60 \fi

61 }%

62 \fi

Each invocation, we check to see if 〈text〉 is wider than the previous maximum for
tag 〈tag〉. If so, we set \eqp@must@reruntrue, so the user will later be notified to
re-run latex. The next run will start with the maximum width of \eqp@〈tag〉.
63 \expandafter\let\expandafter\eqp@tempdima\csname eqp@#4\endcsname

64 \expandafter\let\expandafter\eqp@tempdimb\csname eqp@next@#4\endcsname

65 \eqp@settowidth{\eqp@tempdimc}{#5}%

66 \ifnum\eqp@tempdima<\eqp@tempdimc

67 \global\eqp@tempdima=\eqp@tempdimc\relax

68 \eqp@must@reruntrue

69 \fi

Increase \eqp@next@〈tag〉 to the width of 〈text〉, if necessary.
70 \ifnum\eqp@tempdimb<\eqp@tempdimc

71 \global\eqp@tempdimb=\eqp@tempdimc\relax

72 \fi

Finally, we can call \parbox. We pass it 〈pos〉, 〈height〉, 〈inner-pos〉, and 〈text〉
directly, and we pass it \eqp@〈tag〉 for its 〈width〉 argument.
73 \parbox[#1][#2][#3]{\eqp@tempdima}{#5}%

74 }

\eqboxwidth For the times that the user wants to make something other than a box match
an \eqparbox’s width, we provide \eqboxwidth. \eqboxwidth returns the width
of a box corresponding to a given tag. More precisely, if \eqp@〈tag〉 is defined,
it’s returned. Otherwise, if if \eqp@first@〈tag〉 is defined, it’s returned. Other-
wise, 0.0pt is returned.

Because we use \def to define \eqboxwidth and we return only 〈dimen〉s,
it’s legal to precede \eqboxwidth with \the or anything else that expects to be
followed by a 〈dimen〉.
75 \def\eqboxwidth#1{%

76 \expandafter%

77 \ifx\csname eqp@#1\endcsname\relax

78 \expandafter%

79 \ifx\csname eqp@first@#1\endcsname\relax

80 \z@

81 \else

82 \csname eqp@first@#1\endcsname

83 \fi

84 \else

85 \csname eqp@#1\endcsname

86 \fi

87 }

88 〈/package〉

9

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed, the ones underlined to the code line of the definition, the rest to the code
lines where the entry is used.

Symbols

\@ifnextchar . 16, 21, 26

\@latex@warning@no@line

. 9, 46

A

\AtEndDocument . . . 7, 42

E

\eqboxwidth 75

\eqp@must@rerunfalse 5

\eqp@must@reruntrue

. 5, 37, 68

\eqp@settowidth . . .
. 12, 38, 65

\eqp@tempdima
. . . . 2, 43, 45,
51, 63, 66, 67, 73

\eqp@tempdimb 2, 44,
45, 58, 64, 70, 71

\eqp@tempdimc
. . 2, 65–67, 70, 71

\eqparbox 15
\eqparbox@i 15
\eqparbox@ii 15
\eqparbox@iii

. 18, 23, 27, 28, 30

I

\ifeqp@must@rerun . . 5

P

\parbox 73

S

\settowidth 13

W

\write 47, 54

10

	Motivation
	Usage
	Examples
	Implementation

		2001-04-19T22:49:40-0600
	Champaign, IL
	Scott Pakin
	I am the author of this document

