The listliketab package*

Scott Pakin
pakin@uiuc.edu

2000/09/08

Abstract

The listliketab package helps the user make list-like tabulars, i.e., a
tabular that is indistinguishable from an itemize or enumerate environ-
ment. The advantage of using a tabular is that the user can add additional
columns to each entry in the list.

1 Introduction
Here’s an itemized list:

e Fee

o I

e Fo

e Fum

Here’s another itemized list:

e Fee
o Fi
e Fo

e Fum

What'’s the difference? The two look identical, but the first was typeset in the
ordinary way, with an itemize environment. The second was typeset within a
tabular environment, using the listliketab package. Because the second is a
tabular, it can contain additional columns on each line:

*This file has version number v1.00, last revised on 2000/09/08.

e Fee We can have additional text (and rules) with each item.
o Fi Try doing that in an itemize environment!

e Fo

e Fum Not so easy, is it?

listliketab works with enumerated lists, too:

Due date
1. Clean desk. 2000/09/10
2. Sort “in” pile. 2000/09/11
3. Discard random applications from “in” pile. 2000/09/11

4. Move applications from “in” pile to “out” pile, stamping 2000/09/15
each one with a different official-looking stamp.

5. Write and mail meaningless memos. 2000/09/16
6. Update résumé. 2000/09/20
2 Usage

There are two steps involved in making list-like tabulars: First, you store a
list environment’s parameters. And second, you create a tabular using the stored
parameters. The following are the commands and environments needed to perform
these operations.

\storestyleof {({environment)}

\storestyleof is the easier to use of the two commands that store a list’s
formatting style. Merely pass this command the name of an existing list
environment—generally either itemize or enumerate—as its (environment) pa-
rameter. \storestyleof will then remember the formatting of that list environ-
ment for later use in a tabular.

\storeliststyle

Sometimes, you have a list environment that takes parameters. \storestyleof
has no mechanism for passing parameters to such an environment. In this
situation, you can manually create a list of the appropriate type and call
\storeliststyle from within that list. For example:

\begin{mylistenvironment}{something}{something else}
\item[] \storeliststyle{}
\end{mylistenvironment}

Note that the above will probably leave some blank space in your document.
\storestyleof—which uses \storeliststyle, incidentally—gets around that
problem by building the list within a minipage within an 1rbox. As you can tell,
\storestyleof is a lot more convenient to use, when applicable.

\begin{listliketab}
(tabular)
\end{listliketab}

Once you've stored a list environment’s style with \storestyleof or
\storeliststyle, you're ready to typeset list-like tablulars. The listliketab
environment adjusts the internal and external spacing of a tablular to match
that of the previously given list. It also defines two new field types: L and R. L
inserts spacing corresponding to the list’s left margin, a right-justified parbox of
the same size as the list’s label field, and spacing to separate the label from the
remaining fields. R inserts spacing corresponding to the list’s right margin, and is
more useful in tabularx environments than in ordinary tabulars.

Speaking of which, the (tabular) you put inside listliketab can be any en-
vironment that’s compatible with the array package. This includes tabular,
tabularx, longtable, and probably others, as well. Basically, 1istliketab needs
to call \newcolumntype to define the L and R fields.

The styles stored by \storestyleof and \storeliststyle are valid until
the next call to one of those commands. Hence, any number of listliketab
environments can follow a single \storestyleof or \storeliststyle.

3 Examples
Here’s a simple bullet list:

\storestyleof{itemize}
\begin{listliketab}
\begin{tabular}{L1}
\textbullet & One \\
\textbullet & Two \\
\textbullet & Three \\
\end{tabular}
\end{listliketab}

and its output:

e One
o Two

e Three

Here’s an enumerated list that contains multiple columns after the label:

\storestyleof{enumerate}

\begin{listliketab}
\newcounter{tabenum}\setcounter{tabenum}{0}
\newcommand{\nextnum}{\addtocounter{tabenum}{1}\thetabenum. }
\begin{tabular}{L>{\bf}1@{ ~or~}>{\bf}10{ or~}>{\bf}1}

\nextnum & Red & green & blue \\
\nextnum & Short & stout & tall \\
\nextnum & Happy & sad & confused \\
\end{tabular}
\end{listliketab}

and what it produces:

1. Red or green or blue
2. Short or stout or tall

3. Happy or sad or confused

And finally, here’s an example using tabularx:

\storestyleof{itemize}
\begin{listliketab}
\begin{tabularx}{0.5\1linewidth}{%
LX@{\raisebox{-2pt}{\framebox(12,12) {}}}R}
\textbullet & Milk \\
\textbullet & Flour \\
\textbullet & Sugar \\
\textbullet & Butter \\
\textbullet & Eggs \\
\end{tabularx}
\end{listliketab}

and the generated list:
e Milk
e Flour
e Sugar

Butter

DOoood

Eggs

S

\remove@dim

\no@pt

\11t@labelwidth
\11t@labelsep
\11lt@topsep
\11lt@rightmargin

\11t@tab@indent

\11t@bot@sep

\1llt@arraystretch
\1llt@arraystretch@clean

4 Implementation

This section contains the complete source code for 1istliketab. Most users will
not get much out of it, but it should be of use to those who need more precise
documentation and those who want to extend the 1istliketab package.

1 (xpackage)

4.1 Utility macros

Remove “pt” from the end of a dimen (e.g., 12.34pt — “12.34”). I stole this
from Hideki Isozaki’s ecltree package.

2 {\catcode‘\p=12 \catcode‘\t=12 \gdef\remove@dim#1ipt{#1}}

Make \remove@dim a little more user-friendly.
3 \def\no@pt#1{\expandafter\remove@dim\the#1}

4.2 List parameter storage

Once we're inside a list environment, we’ll need some (global) locations in which
to store the local values of various list parameters.

These are the global equivalents of \labelwidth, \labelsep, \topsep, and
\rightmargin, respectively. They’re stored by the \storeliststyle command
from within a list environment.

4 \newlength{\11t@labelwidth}

5 \newlength{\11t@labelsep}

6 \newlength{\11t@topsep}

7 \newlength{\1lt@rightmargin}

\11t@tab@indent is the indentation of the entire list. It corresponds to the space
to the left of the label or, more precisely, \1leftmargin-\labelsep-\labelwidth.

8 \newlength{\11t@tab@indent}

\11t@bot@sep is the amount of space to add at the end of a list. It is set to
\itemsep+\parsep by \storeliststyle. (I'm not actually positive this is the
right amount of space to add, but it looks okay to me.)

9 \newlength{\11t@bot@sep}

4.3 Other variables

\1llt@arraystretch is the value we need to assign to \arraystretch
to make tabular spacing mimic the spacing used in the given list.
\1lltQ@arraystretch@clean is the same as \11lt@arraystretch, except it is ordi-
nary text instead of a length and does not end in “pt”.

10 \newlength{\1lt@arraystretch}
11 \def\1llt@arraystretch@clean{}

\11t@list@box

\storeliststyle

\storestyleof

This box is used by \storestyleof to hold a throwaway list.
12 \newsavebox{\11t@list@box}

4.4 Commands

When \storeliststyle is invoked within a list environment, it does two things.
First, it copies the current settings of various list parameters into global vari-
ables, so they can be used outside the list. And second, it calculates a value for
\arraystretch to match the list’s inter-item spacing.

13 \DeclareRobustCommand{\storeliststyle}{

Storing list parameters is fairly straightforward.

14 \setlength{\11lt@tab@indent}{\leftmargin-\labelsep-\labelwidth}

15 \global\llt@tab@indent=\11t@tab@indent

16 \setlength{\11lt@bot@sep}{\itemsep+\parsep}

17 \global\llt@bot@sep=\11t@bot@sep

18

19 \globall\llt@labelwidth=\labelwidth

20 \global\llt@labelsep=\labelsep

21 \global\llt@rightmargin=\rightmargin

22 \global\llt@topsep=\topsep

Determining an appropriate value for \arraystretch takes a bit of explana-
tion. Rows of a tabular environment normally have the same height and
depth as a strut. Entries in a list are also one strut high/deep, but are sep-
arated by \itemsep+\parsep’s worth of glue. Hence, to get the new value of
\arraystretch, we have to take:

total space between baselines in a list

\arraystretch

total space between baselines in a tabular

item height + item depth 4+ inter-item spacing

row height + row depth

height(strut) + depth(strut) + \itemsep + \parsep
height(strut) + depth(strut)

23 \setlength{\1llt@arraystretch}{’%

24 1.0pt*\ratio{\ht\strutbox+\dp\strutbox+\itemsep+\parsep}

25 {\ht\strutbox+\dp\strutbox}}

\arraystretch takes a unitless fixed-point number as an argument. Unfortu-
nately, TEX doesn’t support such a thing. So we use our \no@pt macro (defined
in Section 4.1) to convert from a length to the equivalent text, dropping the units
in the process.

26 \xdef\llt@arraystretch@clean{\no@pt{\1llt@arraystretch}}’
27 }

The problem with \storeliststyle is that it can be called only from within a
list. What if you don’t have a list to use as a template? Well, you have to make

listliketab

one. Unfortunately, that list then winds up in your document. \storestyleof
to the rescue! This convenience function creates a list of type #1 (probably either
itemize or enumerate) containing a call to \storeliststyle, but then discards
the list environment, so you never see it. (More accurately, \storelist constructs
the list within an 1rbox that it never typesets.)

28 \DeclareRobustCommand{\storestyleof}[1]{%

29 \begin{lrbox}{\11t@list@box}

30 \noindent

31 \begin{minipage}{\linewidth}

32 \begin{#1}

33 \item[] \storeliststyle{}

34 \end{#1}

35 \end{minipage}

36 \end{1lrbox}\ignorespacesafterend

37}

The listliketab environment defines a new tabular column type, L, which
corresponds to the list’s indentation, the label (a right justified parbox), and the
separation between the label and the list body. L should be the first field in the
user’s tabular environment. Similarly, listliketab defines R, which is the spacing
on the right side of the list. R is useful when the user is using tabularx instead
of tabular. In that case, a good tabularx format string is “LXR”, possibly with
other fields between the X and the R.

listliketab also stretches the array appropriately and suppresses paragraph
indentation. (The L field will ensure the tabular is properly indented.)
38 \newenvironment{listliketab}{%
39 \newcolumntype{L}{%
40 @{\hspacex{\11t@tab@indent}1}/,
41 >{\hfill}p{\11t@labelwidthl}/,
42 @{\hspace*{\11t@labelsep}}}/
43 \newcolumntype{R}{%
44 @{\hspace*{\11t@rightmargin}}}%
45 \renewcommand{\arraystretch}{\11lt@arraystretch@clean}y,
46 \vspace{\1lt@topsepl}/
47 \noindent\ignorespaces},
48 H%
49 \vspace{\11lt@bot@sepl}y,
50 }

51 (/package)

5 Future work

The 1listliketab environment is too inflexible in terms of defining the L and R
column types for the user’s tabular environments. First, the user should be able
to choose what letters to use, in case he has already assigned a meaning to L or
R. Second, L always formats the label as a right-justified parbox, while there may
be a case in which the user wants the label to be formatted differently.

The next limitation that should be addressed in a later version of 1istliketab
is that the user must manually insert \textbullets (when mimicking itemize)
or numbers (when mimicking enumerate) into the “label” field of his tabular. It
would be nice if the 1listliketab environment could do this automatically.

Finally, there is no support for nested lists. Those would probably be tricky
to mimic properly in a tabular, but could occasionally be useful to have.

	Introduction
	Usage
	Examples
	Implementation
	Utility macros
	List parameter storage
	Other variables
	Commands

	Future work

		2000-09-08T19:43:18-0600
	Champaign, IL
	Scott Pakin
	I am the author of this document

