mif2ptl

Produce PostScript Type 1 fonts from Metafont source

Scott Pakin, pakin@uiuc.edu

This file documents mf2pt1 version 1.00, dated 18 June 2001.

Copyright (© 2001 Scott Pakin.

This program may be distributed and /or modified under the conditions of the IXTEX Project
Public License, either version 1.2 of this license or (at your option) any later version.
The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.2 or later is part of all distributions of IKIEX version 1999/12/01 or later.

Chapter 1: Introduction 1

1 Introduction

METAFONT is a high-level, mathematically oriented language for producing fonts. The
METAFONT interpreter produces device-dependent bitmaps, which render well at the target
resolution on the target device, but poorly at other resolutions or on other devices. Adobe’s
PostScript Type 1 font format is the de facto font standard for printers these days. It is a
vector format, which implies that it scales better than bitmaps, and it delegates the device-
and resolution-dependent tweaking from the font source to the target device’s PostScript
renderer. However, Type 1 fonts are extremely difficult to code by hand. Usually, one uses a
WYSIWYG program to design a Type 1 font. METAFONT, with its font-specific programming
language, is an elegant alternative. A font designer can write reusable subroutines for
repeated features, such as serifs and accents. He can define a font in terms of arbitrary
parameters, such as “boldness” or “italicness”, making it trivial to produce entire families
of fonts from a single source (hence the “meta” in the name “METAFONT”). Ideally, we would
like to design a font using the METAFONT language, but produce PostScript Type 1 output
instead of bitmaps.

mf2ptl helps bridge the gap between METAFONT and Type 1 fonts. mf2pt1 facilitates
producing PostScript Type 1 fonts from a METAFONT source file. It is not, as the name
may imply, an automatic converter of arbitrary METAFONT fonts to Type 1 format. mf2pt1
imposes a number of restrictions on the METAFONT input. If these restrictions are met,
mf2pt1 will produce valid Type 1 output. (Actually, it produces “disassembled” Type 1;
the tlasm program from the tlutils suite can convert this to a true Type 1 font.)

1.1 Requirements

Before using mf2pt1, you will need to install the following programs:
Perl mf2pt1 is written in Perl. You will need a Perl interpreter to run it.

MetaPost mf2pt1 actually uses MetaPost, not METAFONT, to produce PostScript output.
Specifically, you will need the mpost executable and the ‘mfplain.mp’ base file.

Type 1 utilities (t1utils)
Producing properly encoded Type 1 fonts is tricky. mf2pt1 delegates the effort
to tlutils, specifically, to the tlasm program within that suite.

Perl is available from the Comprehensive Perl Archive Network (http://www.cpan.org).
MetaPost and the Type 1 utilities are available from the Comprehensive TEX Archive
Network (http://www.ctan.org). (In addition, MetaPost’s home page is
http://cm.bell-labs.com/who/hobby/MetaPost.html, and the Type 1 utilities’ home
page is http://www.lcdf.org/type/.)

I find that it also helps to have a wysiwyG Type 1 font-editing program handy.
Among other uses, this sort of program lets you add Type 1 “hints”, which help produce
quality rendering at low resolutions, such as on a computer monitor. I use PfaEdit
(http://pfaedit.sourceforge.net/), which, besides being free, is capable of producing
hints, outputting TrueType and X Window fonts, and doing various other things that
complement mf2pt1.

Chapter 1: Introduction 2

1.2 Installation

To install mf2pt1, move the ‘mf2pt1’ executable someplace where your operating system
can find it. If you're running Microsoft Windows, you should rename the program to
‘mf2pt1.pl’, so that Windows knows it’s a Perl script. (Alternatively, if you have pl2bat,
use that to produce a ‘mf2pt1l.bat’ file, which you can run as simply ‘mf2pt1’.)

The next step is to produce a ‘mf2ptl.mem’ file from the supplied ‘mf2ptl.mp’. The
command to do this differs from system to system, but it’s usually something like this:

inimpost "\input mf2ptl; dump"
or this:
mpost -ini "\input mf2ptl; dump"

Move the resulting ‘mf2pt1.mem’ file someplace where MetaPost can find it.

The mf2pt1 documentation (what you're reading now) is written in Texinfo and can
therefore easily be converted to a variety of formats:

PostScript (‘mf2pt1.ps’)
texi2dvi mf2ptl.texi
dvips mf2ptl.dvi -o mf2ptl.ps

HTML (‘mf2pt1.html’)
makeinfo --html mf2ptl.texi

Info (‘mf2pt1.info’)
makeinfo mf2ptl.texi

N.B. The install-info command is a convenient way to install ‘mf2pt1.info’ on your
system.

On Unix, you may also want to generate an mf2pt1 man page. The man page is embed-
ded within the ‘mf2pt1’ Perl script and can be extracted with pod2man:

pod2man --center="User Commands" --date="18 June 2001" \
--release="v1.00" mf2ptl > mf2ptl.1

You can then move ‘mf2pt1.1’ into ‘/usr/man/manl’ or any other man page directory. Note
that the mf2pt1 man page is fairly rudimentary. It is primarily a list of the command-line
options (see Section 2.2 [Font information|, page 3) and a pointer to the document that
you’re reading now.

Chapter 2: Usage 3

2 Usage

mf2ptl is fairly straightforward to use. To process a METAFONT source file, merely
specify the filename:

mf2ptl myfont.mf

The above command reads ‘myfont.mf’, uses mpost to convert each character to a separate
Encapsulated PostScript file (named ‘myfont.num’), and then merges those files into a
single “disassembled” Type 1 font, called ‘myfont.ptl’. To convert ‘myfont.ptl’ to a
proper, binary, Type 1 font, just enter the following:

tlasm myfont.ptl myfont.pfb

I then use PfaEdit (see Section 1.1 [Requirements], page 1) to add hinting information to
the result, although this is by no means required.

2.1 Restrictions

If mf2pt1 sounds too good to be true, it is, somewhat. mf2pt1 is not a general-purpose
METAFONT-to-Type 1 converter. Rather, it can convert only certain METAFONT constructs.
This is not a showstopper for new fonts designed with mf2pt1 in mind, but it is unlikely
that mf2pt1 will work on an arbitrary METAFONT source file.

mf2ptl’s biggest restriction is that each glyph must be drawn entirely from
nonintersecting, closed paths, using METAFONT’s fill and unfill commands. (mf2pt1 has
limited support for draw and undraw, but their use is currently strongly discouraged.)
Note that there is a METAFONT library called ‘roex.mf’, which is available from CTAN
(http://www.ctan.org/). ‘roex.mf’ defines a command, remove_overlap, which merges
intersecting paths into a single path, and a command, strongexpand_stroke, which expands
a stroke into a closed path using a circular pen. You may want to use these to work around
mftptl’s path restrictions.

A secondary restriction is that mf2pt1 redefines a number of Plain METAFONT commands,
such as beginchar, fill, and unfill. METAFONT programs that redefine or bypass these (using
METAFONT primitives) will not be convertible with mf2pt1.

A far less severe restriction is due to mf2pt1’s utilizing MetaPost’s METAFONT interface
instead of METAFONT itself. The implication is that commands not defined by MetaPost’s
‘mfplain.mp’ cannot be handled by mf2pt1, either. Very few fonts will have a problem with
this restriction, but see the MetaPost manual for more information.

2.2 Specifying font information

METAFONT fonts normally specify a set of fontdimens, which provide information about
a particular font that cannot otherwise be inferred. These include things like the font’s
x-height, quad width, interword stretchability and shrinkability, and other features that
TEX makes use of. PostScript fonts utilize a largely different set of font parameters, such
as the underline position and thickness, font family name, and copyright notice. mf2pt1
provides METAFONT commands to define the PostScript font parameters in the generated
Type 1 font. These parameters should appear in the METAFONT source file as follows:

Chapter 2: Usage 4

if known ps_output:
fi;

ps_output is defined by mf2pt1 but not by Plain METAFONT. Checking if it is known is the
recommended way to determine if the font is being built under mf2pt1.

The following table lists all of the font information commands provided by mf2pt1,
the command-line equivalent (discouraged), and what the command means. Commands
preceded by an asterisk are also defined by Plain METAFONT and therefore do not need to
be enveloped within a test for ps_output.

font_coding_scheme --encoding The mapping between character num-
bers and PostScript names. mf2pt1
recognizes only standard (Adobe stan-
dard encoding), isolatinl (ISO Latin
1 encoding), and ot1 (TEX 7-bit encod-
ing). Anything else will generate a warn-
ing message and cause mf2ptl to use
standard instead.

font_comment --comment A textual comment that will appear
within the generated font. This is often
used for copyright notices.

font_family —-—family The family that this font belongs to. For
example, “Utopia Bold Italic” belongs to
the Utopia family.

font_fixed_pitch --fixedpitch Whether the font is monospaced (true or
--fixedpitch) or proportionally spaced
(false or ——nofixedpitch).

font_identifier ——fullname The full name of the font, e.g., Utopia
Bold Italic.

font_name --name The symbolic font name, used to load
the font from a PostScript document.
Spaces are forbidden. Generally, the
font name is of the form family-
modifiers. For example, the font name
of Utopia Bold Italic would be Utopia-
BoldItalic.
* font_size --designsize The font design size. This is specified in
“sharped” units within METAFONT code
or as a point size on the command line.

Chapter 2: Usage 5

* font_slant --italicangle When specified with font_slant, the
amount of slant per point. When spec-
ified with --italicangle, the angle in
counterclockwise degrees from the verti-
cal (i.e., zero for an upright font, nega-
tive for a right-slanting italic font).

font_underline_position = --underpos The vertical position at which an under-
line should lie.

font_underline_thickness --underthick The thickness of an underline.

font_unique_id --uniqueid The unique ID for this font. The ID
should be between 0 and 16,777,215.
If not specified, mf2pt1 will choose an
ID at random from the “open” range,
4,000,000-4,999,999. All IDs not in
that range are allocated by contact-
ing Adobe’s UniquelD Coordinator. (I
don’t believe a fee is involved, but I don’t
know for sure.)

font_version --fontversion The version number of the font. This
should be of the form MMM.mmm,
where MMM is the major version num-
ber and mmm is the minor version num-

ber.
font_weight --weight The font weight. For example, the font
weight of Utopia Bold Italic is Bold.

In addition, the command-line argument --help outputs a brief description of mf2pt1
and the other command-line arguments.

The next table lists the METAFONT type and default value of each of the parameters
listed in the previous table.

font_coding_scheme string "standard"

font_comment string "Font converted to Type 1 by mf2ptl, written
by Scott Pakin."

font_family string (The value of font_identifier)

font _fixed_pitch boolean false

font_identifier string (The input filename, minus ‘.mf’)

font_name string (The value of font_family, plus an underscore, plus

the value of font_weight, with all spaces removed)

Chapter 2: Usage 6

font _size numeric (Crudely estimated from the font bounding box.)
font _slant numeric 0
font_underline position numeric -font_size/10

font_underline_thickness numeric font_size/20

font_unique_id string (Randomly generated in the range 4000000-4999999)
font_version string "001.000"
font_weight string "Medium"

The following METAFONT code shows the usage of all of the parameters that mf2pt1
accepts:

if known ps_output:

font_coding_scheme "otl";

font_comment "Copyright (C) 2001 Scott Pakin.";
font_family "Kerplotz";

font_fixed_pitch false;

font_identifier "Kerplotz Light Oblique";

font_name "Kerplotz-LightOblique";

font_size 10pt#; % Important to include this.
font_slant 1/6;

font_underline_position -1pt#;
font_underline_thickness 1/2pt#;

font_unique_id "4112233"; % Better to omit this.
font_version "002.005";
font_weight "Light";

fi;

In the above, the font_fixed_pitch call could have been omitted, as it defaults to false.
Also, unless you’ve requested a unique ID from Adobe, it’s generally better not to assign
font_unique_id; let mf2pt1 choose a random value itself.

The same parameters can also be specified on the command line as follows:

mf2ptl --encoding=otl --comment="Copyright (C) 2001 Scott Pakin."
--family=Kerplotz --nofixedpitch --fullname="Kerplotz Light Oblique"
--name=Kerplotz-LightOblique --designsize=10 --italicangle=-9.5
--underpos=-100 --underthick=50 --uniqueid=4112233 --version=002.005
--weight=Light kerplotz.mf

Note that a METAFONT font slant of 1/6 is equal to a PostScript italic angle of approximately
-9.5. The conversion formula is s = — tan 6, in which s is the slant and 6 is the italic angle.
In addition, the underline position and thickness must be multiplied by 1000/font_size to
convert from the METAFONT units that are used within the ‘.mf’ file to the PostScript units
that are used on the command line.

Chapter 3: Future Work 7

3 Future Work

There are two features I am currently thinking about adding to mf2pt1: Type 1 hints
and support for overlapping paths. Hinting is a way for a font designer to specify how a
font should be rendered at low resolutions, for example, at typical monitor resolutions. In
METAFONT, this is done by controlling the way that points are mapped to pixel locations,
using commands such as define_corrected_pixels, define_blacker_pixels, and lowres_fix. Type
1 fonts are hinted in a completely different way. Type 1 hints distinguish key character
features, such as stems and dots, from decorations that can be discarded at low resolutions.
The PostScript interpreter uses that information to determine how to map points to pixels.
I currently use PfaEdit (see Section 1.1 [Requirements], page 1) to add hints to my Type 1
fonts, but it would be a lot more convenient for mf2pt1 to provide METAFONT commands
for hstem, vstem, dotsection, and the other Type 1 hints. That way, hints will no longer
need to be manually re-added every time mf2pt1 regenerates a Type 1 font.

The second feature I'd like to add to mf2pt1 is support for overlapping paths. The roex
library for METAFONT provides a remove_overlap command that splits paths into noninter-
secting subpaths and an expand_stroke command that converts a stroked, possibly open,
path into a filled, closed path. I'm currently considering how to integrate remove_overlap
and expand_stroke into mf2ptl, as this would enable more METAFONT fonts to be converted
to Type 1 without modification.

In addition to Type 1 hints and support for overlapping paths, I also plan to make

mf2pt1 support more font encodings. The following are the encodings that mf2pt1 will
most likely accept:

TeXMathItalicEncoding
Upper- and lowercase Greek and Latin letters, old-style digits, and a few sym-
bols and accents.

TeXMathSymbolEncoding
A variety of symbols, as well as calligraphic Latin majuscules.

TeXMathExtensionEncoding
Variable-sized symbols, such as braces, integrals, and radicals.

AdobeExpert
Small caps, currency symbols, old-style digits, and various superior and inferior
letters and digits.

		2001-06-19T16:44:14-0600
	Champaign, IL
	Scott Pakin
	I am the author of this document

