
The newcommand.py utility∗

Scott Pakin
pakin@uiuc.edu

2001/05/29

Abstract

LATEX’s \newcommand is fairly limited in the way it processes optional ar-
guments, but the Plain TEX alternative, a batch of \defs and \futurelets,
can be overwhelming to the casual LATEX user. newcommand.py is a Python
program that automatically generates LATEX macro definitions for macros
that require more powerful argument processing than \newcommand can han-
dle. newcommand.py is intended for LATEX advanced beginners (i.e., those
who know how to use \newcommand but not internal LATEX2ε commands like
\@ifnextchar) and for more advanced users who want to save some typing
when defining complex macros.

1 Introduction

LATEX’s \newcommand is a rather limited way to define new macros. Only one
argument can be designated as optional, it must be the first argument, and it
must appear within square brackets. Defining macros that take multiple optional
arguments or in which an optional argument appears in the middle of the argument
list is possible, but well beyond the capabilities of the casual LATEX user. It requires
using Plain TEX primitives such as \def and \futurelet and/or LATEX2ε internal
commands such as \@ifnextchar.

newcommand.py is a Python program that reads a specification of an argu-
ment list and automatically produces LATEX code that processes the arguments
appropriately. newcommand.py makes it easy to define LATEX macros with more
complex parameter parsing than is possible with \newcommand alone. Note that
you do need to have Python installed on your system to run newcommand.py. If
you don’t, you can download it from http://www.python.org.

To define a LATEX macro, one passes newcommand.py a macro description writ-
ten in a simple specification language. The description essentially lists the required
and optional arguments and, for each optional argument, the default value. The
next section of this document describes the syntax and provides some examples,

∗This file has version number 1.00a, last revised 2001/05/29.

1

mailto:pakin@uiuc.edu
mailto:pakin@uiuc.edu
http://www.python.org

but for now, let’s look at how one would define the most trivial macro possible, one
that takes no arguments. Enter the following at your operating system’s prompt:

newcommand.py "MACRO trivial"

(Depending on your system, you may need to prefix that command with
“python”.) The program should output the following LATEX code in response:

% Prototype: MACRO trivial

\newcommand{\trivial}{%

% Put your code here.

}

Alternatively, you can run newcommand.py interactively, entering macro descrip-
tions at the % Prototype: prompt:

% Prototype: MACRO trivial

\newcommand{\trivial}{%

% Put your code here.

}

% Prototype:

Enter your operating system’s end-of-file character (Ctrl-D in Unix or Ctrl-Z in
Windows) to exit the program.

While you certainly don’t need newcommand.py to write macros that are as
trivial as \trivial, the previous discussion shows how to run the program and
the sort of output that you should expect. There will always be a Put your code
here comment indicating where you should fill in the actual macro code. At
that location, all of the macro’s parameters—both optional and required—will be
defined and can be referred to in the ordinary way: #1, #2, #3, etc.

2 Usage

As we saw in the previous section, macros are defined by the word “MACRO” followed
by the macro name, with no preceding backslash. Required arguments are entered
#1, #2, #3, . . . , with no surrounding braces:

PROMPT> newcommand.py "MACRO required #1 #2 #3 #4 #5"

% Prototype: MACRO required #1 #2 #3 #4 #5

\newcommand{\required}[5]{%

% Put your code here.

}

(“PROMPT>” represents your operating system’s prompt; don’t type it explicitly.)
Parameters must be numbered in a monotonically increasing order, starting

with #1 and going up to #9.1 Incorrectly ordered parameters will produce an
error message:

1TEX supports only nine macro arguments.

2

PROMPT> newcommand.py "MACRO required #1 #3 #4"

% Prototype: MACRO required #1 #3 #4

^

newcommand.py: Saw parameter #3 when parameter #2 was expected.

Optional arguments are written as either “OPT[〈param〉={〈default〉}]” or
“OPT(〈param〉={〈default〉})”. In the former case, square brackets are used to
offset the optional argument; in the latter case, parentheses are used. 〈param〉 is
the parameter number (#1, #2, #3, . . .), and 〈default〉 is the default value for that
parameter. Note that the curly braces are required around 〈default〉.

PROMPT> newcommand.py "MACRO optional OPT[#1={maybe}]"

% Prototype: MACRO optional OPT[#1={maybe}]

\newcommand{\optional}[1][maybe]{%

% Put your code here.

}

Up to this point, the examples have been so simple that newcommand.py is
overkill for entering them. We can now begin specifying constructs that LATEX’s
\newcommand can’t handle, such as a parenthesized optional argument, an optional
argument that doesn’t appear at the beginning of the argument list, and multiple
optional arguments:

PROMPT> newcommand.py

% Prototype: MACRO parenthesized OPT(#1={abc})

\makeatletter

\def\parenthesized{%

\@ifnextchar({\parenthesized@i}{\parenthesized@i(abc)}%)

}

\def\parenthesized@i(#1){%

% Put your code here.

}

\makeatother

% Prototype: MACRO nonbeginning #1 OPT[#2={abc}]

\makeatletter

\newcommand{\nonbeginning}[1]{%

\@ifnextchar[{\nonbeginning@i#1}{\nonbeginning@i#1[abc]}%]

}

\def\nonbeginning@i#1[#2]{%

% Put your code here.

}

\makeatother

% Prototype: MACRO multiple OPT[#1={abc}] OPT[#2={def}]

\makeatletter

\newcommand{\multiple}[1][abc]{%

\@ifnextchar[{\multiple@ii[#1]}{\multiple@ii[#1][def]}%]

}

\def\multiple@ii[#1][#2]{%

3

% Put your code here.

}

\makeatother

% Prototype:

In addition to required and optional parameters, it is also possible to specify
text that must appear literally in the macro call. Merely specify it within curly
braces:2

PROMPT> newcommand.py

% Prototype: MACRO textual #1 { and } #2 {.}

\def\textual#1 and #2.{%

% Put your code here.

}

A macro such as \textual can be called like this:

\textual {Milk} and {cookies}.

Actually, in that example, because both Milk and cookies are delimited on the
right by literal text, TEX can figure out how to split \textual’s argument into #1
and #2 even if the curly braces are omitted:

\textual Milk and cookies.

The template for optional arguments that was shown on the preceding page
stated that optional arguments contain a “〈param〉={〈default〉}” specification. In
fact, optional arguments can contain multiple “〈param〉={〈default〉}” specifica-
tions, as long as they are separated by literal text:

PROMPT> newcommand.py "MACRO multiopt OPT(#1={0},#2={0})"

% Prototype: MACRO multiopt OPT(#1={0},#2={0})

\makeatletter

\def\multiopt{%

\@ifnextchar({\multiopt@i}{\multiopt@i(0,0)}%)

}

\def\multiopt@i(#1,#2){%

% Put your code here.

}

\makeatother

In that example, \multiopt takes an optional parenthesized argument. If omitted,
it defaults to (0,0). If provided, the argument must be of the form “(〈x 〉,〈y〉)”.
In either case, the comma-separated values within the parentheses are parsed
into #1 and #2. Contrast that with the following:

2Technically, the curly braces are required only if the argument contains a space, bracket, or
parenthesis.

4

PROMPT> newcommand.py "MACRO multiopt OPT(#1={0,0})"

% Prototype: MACRO multiopt OPT(#1={0,0})

\makeatletter

\def\multiopt{%

\@ifnextchar({\multiopt@i}{\multiopt@i(0,0)}%)

}

\def\multiopt@i(#1){%

% Put your code here.

}

\makeatother

in which the optional argument still defaults to (0,0), but #1 receives all of
the text that lies between the parentheses; \multiopt does not parse it into two
comma-separated values in #1 and #2, as it did in the previous example.

Summary

A macro is defined in newcommand.py with:

MACRO 〈name〉 〈arguments〉

in which 〈name〉 is the name of the macro, and 〈arguments〉 is zero or more of the
following:

Argument Meaning Example
#〈number〉 Parameter (required) #1

{〈text〉} Literal text (required) {+}

OPT[#〈number〉={〈text〉}] Parameter (optional, with default) OPT[#1={tbp}]

OPT(#〈number〉={〈text〉}) Same as the above, but with paren-
theses instead of brackets

OPT(#1={tbp})

The braces surrounding literal text can be omitted if the text doesn’t contain a
space, bracket, or parenthesis. Within an OPT argument, #〈number〉={〈text〉} can
be repeated any number of times, as long as the various instances are separated
by literal text.

3 Further examples

The LATEX picture environment takes two, parenthesized, coordinate-pair argu-
ments, the second pair being optional. Here’s how to define a macro that takes
the same arguments as the picture environment and parses them into x1, y1, x2,
and y2:

PROMPT> newcommand.py "MACRO picturemacro {(}#1,#2{)} OPT(#3={0},#4={0})"

% Prototype: MACRO picturemacro {(}#1,#2{)} OPT(#3={0},#4={0})

\makeatletter

\def\picturemacro(#1,#2){%

5

\@ifnextchar({\picturemacro@i(#1,#2)}{\picturemacro@i(#1,#2)(0,0)}%)

}

\def\picturemacro@i(#1,#2)(#3,#4){%

% Put your code here.

}

\makeatother

LATEX’s \parbox command takes three optional arguments and two required
arguments. Furthermore, the third argument defaults to whatever value was spec-
ified for the first argument. This is easy to express in LATEX with the help of
newcommand.py:

PROMPT> newcommand.py

% Prototype: MACRO parboxlike OPT[#1={s}] OPT[#2={\relax}] OPT[#3={#1}] #4 #5

\makeatletter

\newcommand{\parboxlike}[1][s]{%

\@ifnextchar[{\parboxlike@ii[#1]}{\parboxlike@ii[#1][\relax]}%]

}

\def\parboxlike@ii[#1][#2]{%

\@ifnextchar[{\parboxlike@iii[#1][#2]}{\parboxlike@iii[#1][#2][#1]}%]

}

\def\parboxlike@iii[#1][#2][#3]#4#5{%

% Put your code here.

}

\makeatother

% Prototype:

4 Grammar

The following is the formal specification of newcommand.py’s grammar, written in
a more-or-less top-down manner. Literal values, shown in a typewriter font, are
case-sensitive. 〈letter〉 refers to a letter of the (English) alphabet. 〈digit〉 refers to
a digit.

〈decl〉 ::=-- MACRO 〈ident〉 〈arglist〉 -�

〈ident〉 ::=-- ?〈letter〉 -�

〈arglist〉 ::=--
〈arg〉

? -�

〈arg〉 ::=-- 〈formal〉
〈quoted〉
〈rawtext〉
〈optarg〉

-�

6

〈formal〉 ::=-- # 〈digit〉 -�

〈quoted〉 ::=-- { 〈rawtext〉 } -�

〈rawtext〉 ::=-- anything except a 〈delim〉, {, }, or space -�

〈optarg〉 ::=-- OPT 〈delim〉 〈defvals〉 〈delim〉 -�

〈delim〉 ::=-- [

]

(

)

-�

〈defvals〉 ::=--

〈ident〉
〈quoted〉
〈rawtext〉

? 〈defval〉 -�

〈defval〉 ::=-- 〈formal〉 = 〈quoted〉 -�

5 Future work

Two features I plan to add when I get around to it are support for defining LATEX
environments and support for starred versions of commands. The former should
be fairly straightforward to do. The latter will take some thought to design; I’m
not sure if the * should be considered an argument, which the function body can
test with \ifx, or if it should cause one of two different functions to be called,
depending on whether or not it’s present. I’m leaning more towards considering
it an argument, however. Send me e-mail if you think you’d actually use either of
these features, and I’ll boost its priority in my “to do” list.

I should probably also clean up the newcommand.py source code. It’s my first
Python program and the first parser I’ve written in a long, long time, so I’m sure
it could be improved quite significantly.

6 Acknowledgements

newcommand.py’s parser uses John Aycock’s Scanning, Parsing, and Rewriting Kit
(SPARK). Thanks to him for writing this library and making it freely available
and redistributable.

7

http://www.csr.uvic.ca/~aycock/python/
http://www.csr.uvic.ca/~aycock/python/

	Introduction
	Usage
	Further examples
	Grammar
	Future work
	Acknowledgements

		2001-05-29T22:53:16-0600
	Champaign, IL
	Scott Pakin
	I am the author of this document

