
ttftex
TrueType Font Installer for teTEX

Philipp Lehman
lehman@gmx.net

Version .
September , 

Contents

1 Introduction 1

2 Requirements 1

3 Synopsis 2

4 Prerequisites 4

5 Usage 4

6 Tutorial 8

7 Hints and limitations 11

8 Acknowledgements 13

1 Introduction

ttftex is a Bash script which generates all files required to use TrueType fonts
with teTeX from a set of font files. In short, it will do for TrueType fonts what
fontinst’s \latinfamily command does for Type  PostScript fonts. In addition
to that, ttftex sorts all files, builds the map files required by ttfpk and pdfTeX,
and optionally installs everything into either the system-wide local TeX tree or the
private TeX tree of the user running ttftex.

Note that ttftex’s approach to using TrueType fonts with TeX does not imply con-
verting them to Type  format. With a current version of teTeX and a proper setup,
TeX can use TrueType fonts via the ttfpk utility while pdfTeX even supports them
natively. TeX itself is actually completely indifferent to the font format since it will
merely use the font metrics without accessing the glyph outlines. ttfpk comes
into play when processing the dvi file with utilities that do not support TrueType
fonts natively, such as dvips or dvi readers like xdvi. ttfpk will then render the
glyphs and provide the result in pk font format. pdfTeX, on the other hand, has to
access the fonts directly when embedding them in a pdf file. Fortunately it offers
native TrueType font support and ttftex will supply it with a map file. Please see
section . for a discussion of the limitations of this approach.

2 Requirements

First of all, you need the Bash shell to run ttftex. Ash or plain sh will not work
since ttftex uses Bash-specific extensions. ttftex depends on the utilities vptovf,
ttfafm, and ttftfm. Both vptovf and ttfafm ship with teTeX and should be avail-
able on your system. ttftfm is part of the tools that come with an excellent True-
Type rendering engine called FreeType. You need version ..x or . of FreeType.
I’m told that .x versions will not work because ttftfm and ttfpk have not been
ported to FreeType  yet.

1

mailto:lehman@gmx.net

Your Linux distributor or unix vendor probably provides precompiled FreeType
packages. Please consult the canonical sources for your distribution. I’m quite
sure that at least all major Linux distributions come with FreeType packages. Note
that you need both the core library and the contributed binaries which might be
distributed separately, so make sure you look for names like ‘freetype’ as well as
‘freetype-contrib’ or ‘freetype-tools’.

If your distributor or vendor does not provide FreeType packages you can down-
load¹ the source code. You need either the package freetype-..² from the sta-
ble branch or the two packages freetype-current³ and freetype-contrib-current⁴
from the unstable branch. Note that you have to install the FreeType tools anyway,
since you need ttfpk in order to actually use TrueType fonts with TeX and LaTeX,
even though ttftex doesn’t depend on ttfpk directly.

3 Synopsis

ttf2tex.sh [options] --install --foundry 〈foundry〉 --font 〈font〉 〈family〉

The --install or -i option will create all files, install them, and append all map-
ping information to your map files using the system-wide local TeX tree. You may
use the options in any arbitrary order and mix their long and short forms, but
they cannot be concatenated. Options and arguments are as follows:

--batch

-b

Optional. Run in batch mode. By default ttftex checks
which font files are available and asks for confirma-
tion before proceeding. In batch mode ttftex does not
present a confirmation prompt. Please note that ttftex
itself does not support batch processing. This switch is
provided for cases in which it is run by a wrapper script.

--log

-l

Optional. Write a transcript of your entire ttftex session
to the file ttftex.log in the working directory. By default,
ttftex will not create a log file.

--expert

-x

Optional. Run in expert mode. Use this option if you are
installing rich fonts which offer additional glyphs such
as real small caps and old style figures and provide valid
PostScript glyph names. This option will implicitly acti-
vate --ps-names-only where required, --caps will be
ignored. See the description of the --ps-names-only

option and section . for details.

--typewriter

-t

Optional. Treat the font as a typewriter typeface. This
option will disable hyphenation for the font by adding a
declaration to the font definition file.

 http://www.freetype.org/download.html
 ftp://ftp.freetype.org/freetype/freetype1/freetype-1.3.1.tar.gz
 ftp://ftp.freetype.org/freetype/unstable/freetype-current.tar.gz
 ftp://ftp.freetype.org/freetype/unstable/freetype1-contrib-current.tar.gz

2

http://www.freetype.org/download.html
ftp://ftp.freetype.org/freetype/freetype1/freetype-1.3.1.tar.gz
ftp://ftp.freetype.org/freetype/unstable/freetype-current.tar.gz
ftp://ftp.freetype.org/freetype/unstable/freetype1-contrib-current.tar.gz

--ps-names

-n

Optional. Pass the -n switch to ttftfm. This tells ttftfm
to use the PostScript glyph names as given in the font
file, but only if a glyph has a valid entry in the active
cmap as well. See the ttftfm documentation for details.

--ps-names-only

-N

Optional. Pass the -N switch to ttftfm. This tells ttftfm
to always use the PostScript glyph names as given in the
font file and ignore the font’s cmaps. See the ttftfm doc-
umentation for details.

--overwrite Optional. Run in overwrite mode. If this option is used,
ttftex will overwrite any existing destination files when
installing files into the local or private TeX tree. Use with
care! Note that the map file for ttfpk will not be over-
written. If neither --install nor --user is used, this
option has no effect.

--caps 〈real〉
-c 〈real〉

Optional. Use the real number real to determine the
height of (‘faked’) small caps. The small caps will be real
times the height of uppercase glyphs. A value of . for
example produces small caps which are % the height
of uppercase letters. --help reports the default value.
This option will be ignored if --expert is used.

--slant 〈real〉
-s 〈real〉

Optional. Use the real number real as obliqueness fac-
tor when generating slanted shapes. If this value is larger
than zero, the characters slope to the right, otherwise to
the left. This number is the tangent of the slant angle,
it is usually much smaller than . A common choice is
. which will result in a ,° angle. --help reports
the default value.

--foundry 〈foundry〉
-f 〈foundry〉

Mandatory. Use the string foundry as foundry name
when creating subdirectories. The type foundry is the
company that created the font, for example ‘monotype’.
The string foundry must not contain any spaces.

--font 〈font〉
-o 〈font〉

Mandatory. Use the string font as font name when cre-
ating subdirectories, for example ‘times’. The string font
must not contain any spaces.

〈family〉 Mandatory. The identifier of the font family, for example
‘times’ or ‘mns’. The string family forms the basis of all
file names and is used to identify the font when selecting
it under LaTeX. It must not contain any spaces.

ttf2tex.sh [options] --user --foundry 〈foundry〉 --font 〈font〉 〈family〉

The --user or -u option will create all the files, install them, and append all
mapping information to your map files using the private TeX tree of the user
running ttftex. Options and arguments as above.

3

ttf2tex.sh [options] --foundry 〈foundry〉 --font 〈font〉 〈family〉

When omitting both --install and --user, ttftex will build a branch of your
TeX tree in the current working directory and allow you to install the files later.
Map files will be put into the working branch of ttftex as well, no file outside the
working directory and its subdirectories will be touched. Options and arguments
as above.

ttf2tex.sh --dump-vectors

Dump all internal encoding vectors to the working directory and exit. Any other
options given on the command line will be ignored.

ttf2tex.sh --help

Print a brief usage summary including the defaults for --caps and --slant and
exit. Any other options given on the command line will be ignored.

4 Prerequisites

There are a few things you have to take care of before running ttftex for the
first time. If you haven’t already done so, set up a local TeX tree $TEXMFLOCAL

and a user TeX tree $HOMETEXMF in the global configuration file for kpathsea,
texmf.cnf. Then run:

kpsexpand \$TEXMFLOCAL
kpsexpand \$HOMETEXMF
kpsexpand \$TEXMF

to verify that these trees are set up properly and included in $TEXMF. Also make
sure that $TTFONTS is set in texmf.cnf. To verify that, run:

kpsexpand \$TTFONTS

After that, open the script ttf2tex.sh in a text editor and verify that the paths
and file names given on top correspond to your installation. Read the comments
given there for details. Make sure that there will be exactely one map file for ttfpk
on your system since, unlike dvips or pdfTeX, ttfpk only supports a single map
file called ttfonts.map. The location of the map file created or updated by ttftex
is given in the script, make sure that it points to ttfonts.map if this file already
exists. Create symbolic links to resolve any ambiguities if neccessary. It is safe to
have ttftex use an existing map file or a symbolic link pointing to it since it will
only append data to the file. ttftex will not overwrite it.

5 Usage

5.1 Renaming the font files

Before invoking ttftex, you need to rename the font files in a way that allows
ttftex to guess the weight and the variant of the font by the name of the file.

4

weight berry code file name

upright italic

ultra light, thin, hairline a fama16.ttf famai16.ttf
extra light j famj16.ttf famji16.ttf
light l faml16.ttf famli16.ttf
book k famk16.ttf famki16.ttf
regular r famr16.ttf famri16.ttf
medium m famm16.ttf fammi16.ttf
demibold d famd16.ttf famdi16.ttf
semibold s fams16.ttf famsi16.ttf
bold b famb16.ttf fambi16.ttf
extra bold x famx16.ttf famxi16.ttf
heavy h famh16.ttf famhi16.ttf
black c famc16.ttf famci16.ttf
ultra bold u famu16.ttf famui16.ttf
poster p famp16.ttf fampi16.ttf

Table 1: Weights and file names supported by ttftex

ttftex will search the working directory for all of the files listed in table . These
file names are based on the following pattern: fam is the identifier of the whole
font family. This string will be used when calling ttftex and when selecting the
typeface under the new font selection system (nfss) later. The next letter repre-
sents the weight of the font. For most text fonts you will only need r and b while
some font families come with k and d instead. The next letter, i, indicates an italic
font and is omitted for upright shapes. 16 is a fixed string which indicates Uni-
code encoding. The ‘’ is required in the file names although it is in fact a mere
matter of naming conventions and not actually used by ttftex to determine the
encoding. ttftex always assumes Unicode encoding.

The weight codes used by ttftex are based on the Karl Berry scheme, a canon-
ical naming system for font files. ttftex follows this scheme to a certain extend.
Technically, canonical font naming is by no means required to use the fonts with
a single TeX installation, although it is always a good idea when dealing with large
numbers of fonts. If you are not interested in canonical naming you will find all
you need to know in order to use ttftex in table .

5.2 Canonical font naming

There is a fairly elaborate canonical naming scheme used for the Type  fonts that
come with teTeX as well as by fontinst, the TeX Type  font installation utility. You
can read the documentation of the Karl Berry naming system online⁵ or down-
load it as a tarball⁶ from any ctan ftp mirror. See the file fontname.dvi for an
overview as well as excerpts from various map files and browse the .map files for

 http://www.ctan.org/tex-archive/info/fontname
 ftp://tug.ctan.org/tex-archive/info/fontname.tar.gz

5

http://www.ctan.org/tex-archive/info/fontname
ftp://tug.ctan.org/tex-archive/info/fontname.tar.gz

the complete listings. Of course these lists can’t cover all the fonts out there, so
you might still need to create your own identifiers. Note that the way ttftex han-
dles fonts differs slightly from what is decribed there. ttftex will only recognize
the two variants ‘upright’ and ‘italic’ when parsing the file names and it does not
recognize any widths (e. g. ‘condensed’ or ‘narrow’) at all.

The Berry naming system as described in the document mentioned above is based
on the pattern:

S TT W [V...] [NN] [E] [DD]

S indicates the supplier (foundry), TT the typeface (two letters), W the weight, V
the variant(s) (one or more letters), NN the encoding (usually two letters), E the
expansion (width) and DD the design size. Square brackets indicate codes which
are not used for every font, e. g. V is ‘i’ for an italic font and omitted for upright
shapes. ttftex however can only handle the pattern:

S TT... W [V] 16

That is, the design size is omitted (it is not used with linearly scalable fonts anyway,
even in the Berry scheme) and the expansion as well as all variants other than
italic have to become part of the font family name which is not limited to two
characters. If you want to name the font files according to the canonical scheme,
you have to take this into account — and can only follow the scheme to a certain
extend, although you probably won’t run into problems when dealing with most
standard typefaces. But if a given font family offers both regular and condensed
fonts for example, you will have to split it into two separate families. See section
. for more details. Finally, NN is fixed to ‘’. You won’t find the code ‘’ in the
Berry scheme which only covers  and -bit encodings since TeX can’t handle -
bit encodings anyway.

5.3 Running ttftex

Invoke ttftex as described in section . The family argument corresponds to the
string fam as explained in section .. The names used in conjunction with the
--foundry and --font options must not contain any spaces. By convention,
these names will be used to create subdirectories, their sole purpose is to keep
your installation clearly arranged.

5.4 Configuring pdfTeX

ttftex will create the file fam.map, where fam is the identifier of the font fam-
ily according to section .. You have to add the name of this map file to the
main configuration file for pdfTeX, pdftex.cfg, so that it contains a line like:
map +fam.map.

6

weight berry code nfss series

ttf2tex fontinst

ultra light, thin, hairline a ul ul
extra light j el el
light l l l
book k k* m
regular r m m
medium m mb mb
demibold d db db
semibold s sb sb
bold b b b
extra bold x eb eb
heavy h hb* eb
black c cb* eb
ultra bold u ub ub
poster p pb* --
default boldface m, d, s, b bx --

Table 2: Weights and nfss series codes with ttftex extensions (*)

5.5 Using the fonts

The weight codes employed when renaming the fonts files follow the Karl Berry
naming scheme while the nfss uses a different set of codes to determine what is
called a ‘series’. You need to know about the nfss series codes which ttftex uses
when creating font definition files if you want to select weights other than regular
and bold. Table  lists all supported weights with the corresponding weight and
series codes. The Berry weight codes are what you were using when renaming
the font files while the nfss series codes are what you will need when selecting a
certain weight under LaTeX.

The series codes used by ttftex correspond to those used by fontinst. There is only
one minor difference which you will probably not notice in most cases but which
might come in handy if you install a very comprehensive font family. fontinst sup-
ports  weights and maps them to ten nfss series while ttftex uses a : mapping
scheme for all  weights defined in the Berry system. For this purpose four new
font series specific to ttftex are introduced. They are marked with an asterisk in
table . This difference is normally not visible from a user perspective as ttftex
uses aliases to ensure fontinst-like behavior. If, for example, a ‘heavy’ weight is
provided, it will be available as both ‘hb’ and ‘eb’ unless an ‘extra bold’ font was
provided as well. If a font family comes with multiple weights which would be
mapped to ‘eb’ under the fontinst scheme, these extensions will allow you to con-
veniently use all of them without modifying any font definition files.

When looking at table , you will also notice that one series has a special mean-
ing for ttftex: the bold extended (bx) series. Bold extended is basically a per-
fectly valid nfss series and Computer Modern actually provides bold extended

7

fonts. ttftex however deliberatly (ab)uses it to set a default bold face. The fact
that \bfdefault defaults to bx while most font families don’t come with bold
extended fonts provides a way to set a font-specific default bold face in the font
definition file. For most font families bx will probably end up as an alias for b in
the font definition file, but if one of the more moderate bold weights ‘semibold’,
‘demibold’, or ‘medium’ is available, ttftex will prefer that. Note that this is in-
tended as a fallback mechanism only. If multiple bold weights are available it is a
good idea to set \bfdefault to a sensible value explicitly.

5.6 OpenType fonts

Essentially, there are two types of OpenType fonts: those with PostScript glyph
data (cff fonts, file suffix otf) and those with TrueType glyph data (file suf-
fix ttf). Only the latter variant is supported by ttftex since it is the only one
currently supported by both ttfpk and pdfTeX. OpenType fonts with TrueType
glyph data (or rather: TrueType fonts with OpenType extensions, because that’s
what they are in essence) are installed and used like any other TrueType font. Since
TeX does not make use of the advanced typesetting features provided by Open-
Type fonts, the main difference is the wealth of glyphs available in these fonts. To
exploit that, you need to run ttftex with the --expert option.

When using this option, ttftex will create three font families: fam, famx, and
famj. fam is generated like any other family but uses real small caps instead of
‘faked’ ones, famx adds expert f-ligatures (‘ff ’, ‘ffi’, ‘ffl’), and famj adds expert f-
ligatures as well as old style figures. Accessing the additional glyphs implies using
PostScript glyph names. This is equivalent to using the --ps-names-only option,
but only where required. This is the case for all fonts of the famx and famj families
as well as all small caps fonts of the fam family. Note that this can only work
if the font files actually contain valid PostScript glyph names. If you experience
problems with missing or faulty glyphs this is most likely not the case — and there
is nothing ttftex can do about that.

6 Tutorial

Let’s assume you would like to use Monotype’s Times New Roman with LaTeX.
You have also prepared everything as explained in section . First, create a working
directory and copy the font files there. By default, ttftex will not overwrite files
when installing fonts into your TeX tree, but it does assume that the working
directory contains nothing but the font files you want to install.

gfontview $PWD
ftview -g -r 24 ppem file.ttf
ftdump file.ttf | less

Identify the regular, italic, bold, and bold italic versions by viewing the files either
with a utility such as gfontview or with the bare-bones ftview that comes with
FreeType (press q to close the window, by the way). In the latter case you might

8

want to run ftdump to get the PostScript name of the font and to read the copy-
right notice as found in the header of the font file. The PostScipt name will usually
tell you about the exact weight while the copyright notice contains the name of
the font foundry. Rename the files as explained in section .. You should at least
come up with something like this:

timesr16.ttf timesri16.ttf
timesb16.ttf timesbi16.ttf

If you went one step further and decided to use more canonical names derived
from the Karl Berry naming scheme (in this case we could even use the scheme in
a strict manner), the font identifier would be mns instead of times:

mnsr16.ttf mnsri16.ttf
mnsb16.ttf mnsbi16.ttf

Here m denotes Monotype, ns Times New Roman, r, ri, b, and bi indicate weight
and variant and 16 means Unicode encoding. I will use mns as the font family
name for the remainder of this tutorial.

ttf2tex.sh --install --foundry monotype --font timesnew mns

After renaming the font files, call ttftex with the appropriate font family name.
You will see a lot of messages on the console. These will probably include warning
messages about glyphs not beeing found, since a few glyphs defined in t1 encoding
are missing from the wgl4 glyph set covered by this font. The glyphs which are
usually reported as missing in ordinary TrueType fonts include the f-ligatures ‘ff ’,
‘ffi’, and ‘ffl’. This only means that the missing ligatures will not be typeset as a
single glyph but as a sequence of glyphs — just like any other character. Ligatures
like these are only found in expert encoded Type  PostScript and in OpenType
fonts. Ordinary TrueType fonts usually do provide the essential ligatures ‘fi’ and
‘fl’, though.

If you want to view a table of all t1 encoded glyphs available to TeX and LaTeX,
run plain TeX on testfont.tex after installing everything and view the resulting
dvi file:

echo -e "mnsr8t\n\\\\table\\\\bye" | tex testfont.tex

The situation is worse for ts1 encoding since it is much more exotic and defines
glyphs which are usually not available in text fonts. But you should still get the
most common symbols such as currency signs and other frequently used symbols
like ‘copyright’ or ‘registered’. You can use the textcomp package as usual to get
access to these symbols. The following command will create a complete table for
ts1 encoding:

echo -e "mnsr8c\n\\\\table\\\\bye" | tex testfont.tex

ttftex will create a map file for pdfTeX called mns.map. You have to add that to
the main pdfTeX configuration file, pdftex.cfg:

9

% default map file provided by tetex
map pdftex.map
% additional map file created by ttf2tex
map +mns.map

That’s it. Now you may create a test document to try your new font out. If you
use dvi or PostScript as preview format, the first run with the new fonts will
take a little longer since ttfpk has to generate all pk fonts required to display the
document. Subsequent runs will be much faster because, as with metafont fonts,
pk fonts generated by ttfpk are cached in $VARTEXFONTS.

There are no peculiarities specific to TrueType fonts when selecting them under
LaTeX. To select the fonts simply employ the standard nfss commands as docu-
mented in chapter  of the LaTeX font selection guide. This guide ships with teTeX
as fntguide.dvi and is also available in pdf format from ctan.⁷

To select Times New Roman anywhere in your document use a command like:

\fontencoding{T1}\fontfamily{mns}\selectfont

To use Times New Roman as the default roman typeface for the whole document,
redefine \rmdefault in the preamble:

\renewcommand{\rmdefault}{mns}

If your typeface provides more than two weights you can select one of them by
using the \fontseries command in conjuntion with the nfss series codes listed
in table  on page . To select the demibold (db) weight for example, use the
following command:

\fontseries{db}\selectfont

Compact font switching commands such as \textbf or \bfseries will work
as usual, but keep in mind that they are using \bfdefault as the bold weight.
If you want \textbf and \bfseries to use demibold instead, simply redefine
\bfdefault accordingly:

\renewcommand{\bfdefault}{db}

Finally, you might want to write a .sty file that sets Times New Roman as the
default roman typeface. Here is a sample file, install it as timesnew.sty:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{timesnew}
\RequirePackage[T1]{fontenc}
\RequirePackage{textcomp}
\renewcommand{\rmdefault}{mns}
\endinput

Now all you need to do in order to use your new typeface is to put the command
\usepackage{timesnew} in your document’s preamble.

 http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

10

http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

7 Hints and limitations

7.1 Global issues

There are two limitations when using TrueType fonts with TeX and LaTeX ac-
cording to ttftex’s approach, both of which are beyond ttftex’s control: you can’t
produce resolution independent PostScript and you can’t use slanted fonts in pdf
files. The main problem with PostScript is the fact that dvips does not support
TrueType fonts. When the dvi file is processed, dvips implicitly calls ttfpk to ren-
der the fonts and embeds them in bitmap format in the PostScript file. Since the
rendering quality of ttfpk is excellent, the resulting PostScript will look fine when
printed at the corresponding resolution, but keep in mind that it is not portable.
When using dvips, you face a situation similar to that of metafont fonts. That
doesn’t mean that you can’t print or view the PostScript file on other machines,
but the font quality might be unsatisfactory if the resolutions don’t match. If you
need truly portable files, use pdfTeX instead.

As mentioned in the introduction, pdfTeX offers native TrueType font support.
Compared to Type  fonts there is only one minor limitation when producing
pdf: it does not support slanting or extending of TrueType fonts. For this reason,
some lines in the map file which ttftex creates for pdfTeX are commented out.
Otherwise pdfTeX would complain whenever it reads its map files. If you try to
use ‘faked’ slanted shapes of TrueType fonts with pdfTeX, these fonts will be miss-
ing in the resulting pdf file. You can work around this issue be making sure that
all pk fonts required to typeset the slanted parts have been generated by ttfpk be-
fore you run pdfTeX. But note that this would mean using bitmap fonts since the
slanted fonts will end up in bitmap Type  format in your pdf file — something
you were probably trying to avoid by using vector fonts in the first place. In short,
don’t use slanted fonts if you want to produce a pdf file.

If you want to make sure that no pk fonts were embedded in a pdf file, simply
look at the console output of pdfTeX. Here is a short excerpt of pdfTeX’s output
as it is processing a file using the font from the tutorial:

</var/spool/texmf/pk/modeless/monotype/timesnew/mnsbo16t.600pk>{/usr/loca
l/share/texmf/pdftex/T1-WGL4.enc}<mnsbi16.ttf><mnsb16.ttf></var/spool/tex
mf/pk/modeless/monotype/timesnew/mnsro16t.600pk><mnsri16.ttf><mnsr16.ttf>

You can tell by this that two types of fonts were embedded in the pdf file: the
fonts with a .ttf extension are TrueType fonts while the ones with the extension
.600pk are pk fonts, where  is their resolution in dpi. Alternatively, you can
use Acrobat Reader’s font information dialog or the pdffonts utility that comes
with recent versions of xpdf to verify the format of the fonts embedded in the pdf
file. All pk fonts will be listed as ‘Type ’.

When printed on a  dpi printer, this file will look excellent and you won’t be
able to tell the difference between TrueType and pk fonts at all. When viewed with
Acrobat Reader however, the slanted fonts will look very poor. You have probably
seen this distortion of embedded bitmap fonts which are scaled and anti-aliased

11

before when using metafont versions of the Computer Modern fonts. Note that
Ghostscript (including all frontends based on it) does a much better job when
dealing with bitmap Type  fonts.

This issue does not affect ‘faked’ small caps as these are simulated by typesetting
(tall) caps at a smaller size which does not imply any manipulation of the glyph
outlines. It also doesn’t affect ttfpk and all applications which implicitly rely on
it when processing dvi files (dvips, dvi viewers), since ttfpk is capable of manip-
ulating the glyph outlines of TrueType fonts.

7.2 Issues specific to ttftex

ttftex supports t1 (Cork) and ts1 (Text Companion) encoding only and is thus
limited to European languages and to typesetting text. If you want to typeset
math, you need to use a different font in math mode. If you don’t change any
default settings apart from what is suggested in this manual, this is precisely what
is going to happen.

There is no support for multiple widths within one font family. If you have a large
font family which comes with regular as well as condensed or narrow fonts you
have to treat all widths as separate families. This is in fact a rather academic is-
sue as there are no compact width switching commands anyway. Since the nfss
doesn’t have independent concepts of weight and width, separating the width
from the weight by splitting up font families even makes sense in a way. After
all, you don’t use a condensed font the way you use boldface.

Variants are limited to upright and italics. Oblique fonts are treated as italics when
running ttftex and have to be renamed accordingly. Like the previous point this
is essentially a font naming issue. ttftex doesn’t care if the font file provided for,
say, the roman upright shape is in fact a script, an old english, or a titling typeface,
but you can’t use canonical names for such fonts and you may need to split up the
font family.

‘Faked’ slanted shapes are supported for all typefaces including those which actu-
ally provide an oblique variant. Oblique fonts are basically slanted derivatives of
the corresponding upright shape. They differ from ‘faked’ slanted shapes in that
they were actually drawn by the font designer and not generated by a machine.
The italics of most sans serif and typewriter fonts are in fact oblique shapes. If
you install such a typeface with ttftex and want to use its real oblique shape,
simply call the italic version. If you call the slanted version explicitly, you will get
a ‘faked’ slanted shape derived from the upright shape by ttfpk. This is not a
limitation but intentional.

7.3 Upgrading from a previous version

Versions prior to .: there is a small fix in the T1-WGL4.enc encoding vector
that affects the letter ‘z’ with a dot accent (Ż, ż). To make this glyph work,
delete the T1-WGL4.enc file installed by an older version of ttftex before in-
stalling any new fonts or use the --overwrite switch when running ttftex.

12

Alternatively, you may run ttf2tex --dump-vectors to dump all encod-
ing vectors if you prefer updating the file manually. This was a bug in the
original T1-WGL4.enc which ships with FreeType, so you should make sure
that there are no other old versions of this file left on the system.

Versions prior to .: the default path for .ttf files has been changed. Please take
a look at the header of the ttf2tex.sh script and make sure that it corre-
sponds to your system. Older versions of teTeX used $TEXMF/fonts/ttf

while newer versions now seem to use $TEXMF/fonts/truetype— as does
ttftex from version . on.

8 Acknowledgements

ttftex was inspired by a tutorial⁸ written by Damir Rakityansky which explains
how to use TrueType fonts with MiKTeX. I would also like to thank Vaggelis
Kapoulas, Werner Lemberg, and Bruce d’Arcus for their help, contributions, and
feature suggestions.

 http://www.radamir.com/tex

13

http://www.radamir.com/tex

	1 Introduction
	2 Requirements
	3 Synopsis
	4 Prerequisites
	5 Usage
	6 Tutorial
	7 Hints and limitations
	8 Acknowledgements

